C++ FRehch

User C’{r'oup

Développeurs C++ de tous les pays, renconJrrez-vous!

Understanding Large and Unfamiliar
Codebases

Web: mshah.io 60 minutes | Intermediate Audience

@ Youlube www.youtube.com/c/MikeShah 19:00 - 20:00 Thur, June 19, 2025
Social: mikeshah.bsky.social

Courses: courses.mshah.io
Talks: http://tinyurl.com/mike-talks

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

Talk Abstract: It's your first day on the job as a new employee. You set
up your workstation and then download a repository of over 1,000,000
lines of code. Even more intimidating, the code has been around for 20
years and has parts of it in legacy C++ and also using tentative C++ 26
features from various libraries. You feel overwhelmed! Don't fret
however! In this talk, I provide you a collection of tools to help software
engineers of all levels understand what is going on in large unfamiliar
codebases. The audience will leave this talk with a few simple and
advanced tricks for navigating large and complicated codebases.

https://cpponsea.uk/2025/session/understanding-large-and-unfamiliar-codebases

https://cpponsea.uk/2025/session/understanding-large-and-unfamiliar-codebases

Your Tour Guide(s) for Today

Mike Shah

Current Role: Teaching Faculty at Yale University

O

Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

Available for:

O

o

Contract work in Gaming/Graphics Domains

= e.g.tool building, plugins, code review
Technical training (virtual or onsite) in Modern
C++, D, and topics in Performance or Graphics APIs

Fun:

@)

Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

Web
www.mshah.io

© YouTube

https://www.voutube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

What'’s the biggest codebase you have ever worked on?
(i.e. the approximate lines of code)

What’s the biggest codebase you have every worked on? (2/3)

Follow-up question(s):

1. Did that codebase ever get smaller?
2. Did that codebase become less complex over time?

3. How well was that codebase documented?
a. le.CouldI go find tutorials, internal wiki pages, or internal/external videos
explaining the code or architecture?

4. Did anyone say “Scrap the project -- let’s rebuild it from scratch”?

What’s the biggest codebase you have every worked on? (3/3)

4. Did anyone say “Scrap the project -- let’s rebuild it from scratch”?

a. "Sometimes we feel this way -- but it can be hard to convince a business to throw
away thousands/millions of lines of code :)

How Big are Codebases (1/2)

Today we are talking about

large and unfamiliar codebases

I think we have an idea of what
this means, but the scale I'm
interested in is anything from
tens of thousands of lines, to
billions of lines of code (e.g.

MOonorepo)
o l.e.Big enough you cannot keep the
whole design in your head

Note:
o The figure on the right gives a very
rough approximation of various
codebases.

HOW MANY LINES OF CODE MAKE UP
THESE POPULAR TECHNOLOGIES

Unixv1.0 10,000
Average iPhone App | 40,000
Space Shuttle | 400,000
Windows 3.1 l 2,300,000
HD DVD Player . 4,500,000
World of Warcraft . 5,250,000

Firefox Browser 9,900,000

Android 0S - 11,800,00
F-35 Fighter Jet _ 24,700,000

Facebook

61,000,000

0 25M 50M 75M
LINES OF CODE

SOURCE: NASA, Quora, Ohloh, Wired

httc ternal-preview redd it/RP36x
Wired Article for more on code sizes: Qi

https://external-preview.redd.it/RP36x-Dy-3iZn_CEMh_mEfs7GlgvhjKlasyWAQk2v_M.jpg?auto=webp&s=b6177113412f10a5c9a2672738736d4e8647883d
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

How Big are Codebases (2/2)

e For areference of scale --

o “A million lines of code, if printed, would be about
18,000 pages of text. That’s 14x the length of War
and Peace.”

m https://www.visualcapitalist.com/millions-lin
es-of-code/

e That’s alot of ‘text’, architecture,
subsystems, etc. to keep in our head!

https://www.visualcapitalist.com/millions-lines-of-code/
https://www.visualcapitalist.com/millions-lines-of-code/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6b32b94-f99e-498f-840b-4cf789c6503c_1536x2048.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6b32b94-f99e-498f-840b-4cf789c6503c_1536x2048.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6b32b94-f99e-498f-840b-4cf789c6503c_1536x2048.jpeg

What makes a codebase hard to understand?

What makes a codebase hard to understand? (2/4)

Understanding the logical

control flow (and/or data flow)
o Where are the entry points?
o Are there threads / fibers / coroutines
o What are the ‘hot spots’ and important
subsystems
o Where does ‘state’ change in the
program
o What is a specific function doing?
m Is the name of the function
reflective of what it does?
m Are the parameters named well
and consistent?

0
static int foo(int x) { entry: foo

int y;
if (xi==11)
y = 2; 1

X ==

y = 3; T
return vy; \
} |:> /e false
\

void bar() { 3
foo(x: 1); y=2 Ll ﬁﬁﬁﬁﬁ

} \
| 4

return y

else

([S

To the right is a visualization of a ‘Data Flow Analysis’. This is useful once
you know the isolated fragment(s) of code you want to look at (but this
visualization technique otherwise does not work on the entire codebase).
https://blog.jetbrains.com/clion/2023/11/striving-for-better-cpp-code-part-i
-data-flow-analysis-basics/

10

https://blog.jetbrains.com/clion/2023/11/striving-for-better-cpp-code-part-i-data-flow-analysis-basics/
https://blog.jetbrains.com/clion/2023/11/striving-for-better-cpp-code-part-i-data-flow-analysis-basics/

What makes a codebase hard to understand? (3/4)

e The pure scale of software and its

relation to complexity
o 1l.e. The number of lines of source code

e Different variations of code
o e.g.Legacy C++ mixed with C++26
o Different ‘design patterns’ or architecture
design within the source code

‘source code’ we visualize as text -- printing out the code will
look something like the bottom-right image. 11

What makes a codebase hard to understand? (4/4)

Human factors can
additionally contribute to

making your life harder

o Team size / structure

o Accessibility to code that you may
not own.

m (Is all the code in the same
repo, or do you need
permission to view other
libraries?)

o No version history or
documentation of the ‘why’
something evolved

o Undocumented code that only a
‘senior engineer’ understands, and
everyone is afraid to touch.

Conway's Law

“Organizations, who design systems, are constrained to produce designs which
are copies of the communication structures of these organizations.”

Organizational Structure Product Design

‘ ; are likely to create

Small Independent Teams Modular, Service Architecture

- is likely to create

Single Large Team Monolithic Architecture J%/mw_

@

B

Every heard of Conway’s law? Organizational
structure can potentially impact the very structure
of code itself!

https://www.jeffwinterinsights.com/insights/conways-law-enterprise-architecture

12

https://www.jeffwinterinsights.com/insights/conways-law-enterprise-architecture

Why do folks think I’'m talking about this topic?

13

Why do folks think I’m talking about this topic? (2/3)

RE
e Answer: It was an honest difficulty of mine | lgﬂmﬂjm NEW/I0B
when I started out as a software engineer!

Ah, | have found memories of
TortoiseSVN -- it’s still active as

far as | know! 14
bitps://preview.red: 1e-v0-tv710uo8hdvc ipeg?width=320&crop=smari&auto=wet =5
d56747737e31e0cfBba5cans: Dof173e

https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e
https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e

Why do folks think I’'m talking about this topic? (3/3)

e Answer: It was an honest difficulty of mine
when I started out as a software engineer!

e Iremember the difficulty and overwhelming
feeling as an intern learning new tools &

code!
o (On occasion I consult on short contracts -- so this is
still relevant today!)
o Isuspect there are others in the audience who
remember this daunting feeling too

e It probably feels a bit embarrassing to admit
that feeling on the first day of work! Ah, I have found memories of

TortoiseSVN -- it’s still active as

o We should not be afraid to ask questions however! far as | know! s

https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e
https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e

Where do we learn to read code?

./missing-semester | lectures | about

e The other reason is that we are are

not always taught many tools or The Missing Semester of Your CS
how to read large codebases in Education
school or our workplace _— |
, . Classes teach you all about advanced topics within CS, from operating system
© Let me be CIear --I'm no‘; necessarlly to machine learning, but there’s one critical subject that’s rarely covered, and
blamlng schools -- there is a lot of instead left to students to figure out on their own: proficiency with their tools.
Computer SCience to cover. Wwe’'ll teach you how to master the command-line, use a powerful text editor,
m Some 1arge prOjeCtS in school are use fancy features of version control systems, and much more!
maYbe 2-5k l-lneS of code -- but Students spend hundreds of hours using these tools over the course of their
agaln not qUIte the Scale we are education (and thousands over their career), so it makes sense to make the
talking about for millions of lines of | experience as fluid and frictionless as possible. Mastering these tools not only
code enables you to spend less time on figuring out how to bend your tools to your
o Note: I (and many Other prOfeSSOI'S) dO will, but it also lets you solve problems that would previously seem impossibl;
often expose students to large codebases |“™*
at various points -- probably some Read about the motivation behind this class.
professors out their doing an excellent

. | MIT, Tufts, Yale, UMich, etc. have various courses in this spirit
_]Ob as well! for helping students learn tools that | know of.

https://missing.csail.mit.edu/ 16

https://missing.csail.mit.edu/

Understanding Large and Unfamiliar Codebases

Now from this talks title, the word ‘understanding’ is important

We might also mean:

o The performance of some aspect
o The memory safety or security of a system
o Or really any other metric about a piece of software.

e That said -- today we are going to focus more on understanding --
what our code is logically doing -- and what tools can help!

17

Today we’ll focus on these 3 categories

1. Understanding the control flow

2. The pure scale of software and its relation to complexity

3. Human factors can additionally contribute to making your life
harder

18

Given:

An unknown (open-source) codebase

19

Real World Example: Transport Tycoon (1/2)

e Today I'll give be giving some tips on
understanding larger source code
projects.

e We will look at the video game --
Transport Tycoon

o Some of you may be familiar with it, and it
is perhaps better if you are not!

o (Although, I will say it’s a wonderfully
charming game...)

20

Real World Example: Transport Tycoon (2/2)

e If you are following along at home, you
can follow along by picking Transport
Tycoon (https://www.openttd.org/) or
a similar project.

e A good candidate project to practice
with is:

o Open Source

o Many collaborators, perhaps of different
levels of seniority/experience

o Long-lived, and lots of lines of code!

o Ideally with some ‘git’ history, but not strictly
necessary (i.e. may be fun to practice
applying patches, fixing bugs, etc.)

o And again -- perhaps even better if you’re not
100% familiar with the project

m (but perhaps have some domain
experience or interest in the domain) 21

https://www.openttd.org/

mikef@miké—MS-?BlT:‘ $ cloc .
3138 text files.
2402 unique files.

PrOjeCt Scale 1371 files ignored.

github.com/AlDanial/cloc v 1.98 T=1.86 s (1293.4 files/s, 534526.5 lines/s)

Language files blank comment code
¢ 9 hd Text 86 53266 0 308781
e The ‘cloc’ tool will count pm 299 49695 47958 186428
3 k 59 6122 4985 16050
pro_]eCt r(rill‘e’ilaie 304 1380 1520 11791
o This may give some insights [5 - = i
as well if there are multiple HTML 5 278 1 3106
languages used varkdoun 2% 266 e 3011
Our stats for the Open 2 s .
SVG 2 1 2 1353
Transport Tycoon game : | . . e
for examp(lje are: e L 4 > 2!
o 188,428 C++ diff 2 3 31 174
h

o 123,108 C/C++ headers 2 b o o1 - - 125
1 P Shell 5 34 27 113
© 670 hnes Of C Jgtlvggc r(i3pt 1 16 24 86
o etc. Tcl/Tk 1 22 32 52
. . B Shell 3 17 32 41
Let’s agree this is a large reStructuredText) 5 0 2

. h
size codebase to Dockerfile ! 1 0 3
investigate! su: 202 128100 o736 767199

mike@mike-MS-7B17: o -14.1% [|

1.

Understanding the control flow

23

Understanding Control Flow: Run our program!

e The very first thing to do, is run
whatever
game/application/service/system/etc
you are building

o This sounds silly and is obvious,
but you should have a high level
understanding of what your
program actually does is key.

e I will assume that you can build the
software using whatever build system

you are provided.
o And]I fully acknowledge, this it is not often
trivial to build!

24

Understanding Control Flow: Entry Points (1/3)

21 int CDECL main(int argc, char *argv[])

* One Of the ﬁrSt things I]'i]'<e to , /* Make sure our arguments contain only valid UTF-8 characters. */
dO _ iS tO anChOI around the (int 1 = 0; i < argc; i++) StrMakeValidInPlace(argv[il);
¢ .) . 2 CrashLog::InitialiseCrashLog();
main()’ function

SetRandomSeed (time(lptr));

e From the main() function, you -
will often get hints as to the openttd main(argc, argv);
overall software architecture

. . . In my opinion, a good software engineering practice is to keep
o (e arethere pluglns loaded’ 1s there your ‘main’ relatively clean. Observe here, the main entry point

an event loop, etc.) returns to the ‘real main (openttd_main)
o Some things you can actively log are:
m What happens before main (any
initialization code)
m What happens after (cleanup
code)

In this particular software, you’ll observe there are also different
‘main’ functions per operating system.

25

Understanding Control Flow: Entry Points (2/3)

e Here’s an example of
finding ‘main()’ with
grep

e grepisatool for
searching for patterns
within files

o e.g.

m grep -irn “main”

m This does a case
insensitive(l) search,
recursively through
the directory (1), and
provides line numbers
(n) with the filenames

o This gives us around 37
places to look

$ grep -irn "main()" .

grep: ./build/openttd test: binary file matches
3:int
848:void {}
grep: ./build/CMakeFiles/openttd lib.dir/src/video/opengl.cpp.o: binary file matches
int { return 0; }"
184:def

:53:def

"void
138: "void
164 "void
191 "void
to prevent a NSAutoreleaseNoPool error when
is never executed. */

191
211: * These are called from

* openttd

26

https://man7.org/linux/man-pages/man1/grep.1.html

Understanding Control Flow: Entry Points (3/3)

e grep is quite powerful, so you will want to spend some time playing

with it
e Here’s a more specific search that gives us around 7 places to look
o grep -irn "main()" .
] tells us to ignore binary files
n tells us to look at .cpp files

3 AnE
:123: * openttd | is never executed. */
;1322 finder.

* openttd | is never executed. */
2002-03-11 lpd Corrected argument list for , and added int return
:245:1int AyStar::

11044 : [[maybe unused]] int r = npf aystar.

27

Pro Tip: Debug Symbols (1/2)

e gJrep is going to be quite useful,
but it can sometimes be a
‘treasure hunt’ if we do not
know what we’re looking for

e Remember -- we can simply

run our program

o And you did compile with debug
symbols (i.e. ‘-g’) right?

A nice write up on Debug information is here:
° https://developers.redhat.com/articles/2022/01/10/gdb-develop

ers-gnu-debugger-tutorial-part-2-all-about-debuginfo
° https://undo.io/resources/quide-to-symbols-debug-info/
Note: If you're in a live system, you can ‘gdb -ex 'attach $PID'
app.debug’ add debug info as well -- but let’'s assume we have our
debugging symbols in order!

https://man7.org/linux/man-pages/man1/grep.1.html
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://undo.io/resources/guide-to-symbols-debug-info/

Pro Tip: Debug Symbols (2/2)

Note: A **key** that will make

your life easier

o Build/Compile with debug
information!
|| cmake -DCMAKE_BUILD_TYPE=Debug ..

o In some instances, this may also
include making sure to build 3rd
party libraries in debug as well

Debug information is useful
for helping you inspect and
gather more information about
your programs execution with
the tools we will use

A nice write up on Debug information is here:
https://developers.redhat.com/articles/2022/01/10/gdb-develope

rs-gnu-debugger-tutorial-part-2-all-about-debuginfo

Note: If you're in a live system, you can ‘gdb -ex 'attach $PID'
app.debug’ add debug info as well -- but let’s assume we have
our debugging symboils in order!

29

https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo

Step-by-Step debugging (1/3)

e SO now we have a ‘large
unfamiliar codebase’ that we
have compiled in ‘debug’

e SO We can use a ‘debugger’ to

step through the execution

o And of course use a ‘debug build’ of
the source.

e Let’s repeat our first task of
finding main() that we did with
‘erep’, but this time with a
debugger

Host

GDB

ptrace()

| 4
Y

BuggyApp

Remote
Protocol

[

Target

GDBserver

T

ptrace()

[
[
\

You can learn more about how debuggers work
here: https://acsabook.org/en/v2/gdb.html

30

https://aosabook.org/en/v2/gdb.html

Step-by-Step debugging (2/3)

e GDBisagood free
debugger to start with
e In this video, I attach
a debugger to a
running process
o psaux]|grep ‘openttd’
m This gives me the
name
o ThenI attach to the
running process
m sudo gdb -p pid
e next slide for more!

$./openttd |

31

https://sourceware.org/gdb/
https://docs.google.com/file/d/1Uf2QlHA_vfvzmiWx-YP_t2BQdp8JzNFy/preview

Step-by-Step debugging (3/3)

GDB cheatsheet - page 1
¢ i) e
o you V maln SR SPEpgaw (e ey o Gotonetinsucton soure ne) b

Start GDB (with optional core dump) Break/watch the named function don't dive into functions.
3 hd # gdb --args <program> <args..> line_number finish
u Ct 1 O O a St a r t S t e 1 Start GDB and pass arguments Break/watch the line number in the cur- (COn(InUe until the current function re-
I I I l l I (I I I I urns.
, # gdb --pid <pid> rent source file.)
Start GDB and attach to process. file:line number continue

Break/watch the line number in the Continue normal execution

set args <args...> Preadwaiclite :
rou e C O e E Set arguments to pass to program to ek Variables and memory
hd be debugged Conditions print/format <what>

— break/watch <where> if <condition> Print content of variable/memory locati-

1 3 Run the program to be debugged. Break/watch at the given location if the on/register.
g ome 1mportant comimands 1n contion's o
+ Conditions may be almost any C ex-

Kill the running program. Like ,print*, but print the information

pression that evaluate to true or false. after each stepping instruction.
Breakpoints condition <breakpoint#> <condition> undisplay <display#>
break <where> Set/change the condition of an existing Remove the ,display” with the given
Set a new breakpoint. break- or watchpoint. number.
. delete <breakpoint#> Examining the stack enable display <display#>
Ctrl+C // Pause running program Remove a breakpont. Sifibne Giiply catoptiess
clear where En- or disable the ,display” with the gi-
b r. mal n / / b r e a k o 1 n .t 1 n ma 1 n Delete all breakpoints. Show call stack. ven number.
p enable <breakpoint#> backtrace full x/nfu <address>
. Enable a disabled breakpoint. where full Print memory.
C / / C O n t 1 n U e i # Show call stack, also print the local va- n: How many units to print (default 1).
disable:sbreakpolnty#s riables in each frame. {: Format character (like ,print‘).

Disable a breakpoint. u: Unit.

// to step into a function TS ™ ““Saer e sackrame tocperte on

s
- MREER <wzseelze:newwa(chpmn(pping b Byte,
h: Half-word (two bytes)
n // next line SR e R e A e A st
f // finish the stack frame

Like breakpoints. viog into filistion, g: Giant word (eight bytes)).
m Useful if you’'re in library code
you do not own GDB Cheat sheet (page 1 of 2)

o bt // print out the backtrace https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

O O O O O O

© 2007 Marc Haisenko <marc@darkdust.net>

kill // to exit the process, but stay
in GDB

32

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Reverse debugging (1/5)

e Just a brief aside on STEP Bg OSTEP DE BUG GING

debuggers MANY STEPS LATER
: : B | A1 GG
0 KILL
e At some point you will L)
i STEP OVER
probajbly have this SHOULD HAVE STOPPED
experience. STEP OVER ~

o Soit’s worth mentioning
‘reverse-debuggers’ or
‘time travel debuggers’ to
you :) -

MONKEYUSER. COM

https://preview.redd.it/e4b0jejmixxz.png?width=1080&crop=smart&auto=webp
&s=5b03b0d54dbe429bace5820da37a2345682eaada

33

https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada
https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada

https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada
https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada

Reverse debugging (3/5)

e Reverse debuggers (since GDB 7.0) allow you to ‘reverse-step’ or
‘reverse-next’ where you are.
e Thisis very useful during your code exploration!

GDB Wiki 9"
sei. ReverseDebug

HomePage || RecentChanges | FindPage || HelpContents | ReverseDebug

Immutable Page Info Attachments | More Actions: v

Reverse Debugging with GDB

Beginning with the 7.0 release in September 2009, gdb now includes support for a whole new way of debugging called "reverse debugging" --
meaning that gdb can allow you to "step" or "continue" your program backward in "time", reverting it to an earlier execution state.

Reverse debugging is only supported for a limited (but growing) number of gdb targets, including:

» Certain remote targets including the Simics and SID simulators, and "Undo-db"
» The Process Record and Replay target for native linux.
35

https://sourceware.ora/gdb/wiki/ReverseDebug

https://sourceware.org/gdb/wiki/ReverseDebug

Reverse debugging (4/58SNEEELICIEEE

trial

e UDB from Undo is another invaluable
tool I'll demonstrate shortly.

e UDB effectively uses the same GDB
commands -- so if you know one, you
know both!

e More information
o Performance Differences between UDB and
GDB [link] T % omie R
o Ifyou can’t use a reversible debugger? , then |
click this link for the GDB equivalents to try

The interactive time travel debugger
for Linux C/C++ for debugging live processes

lextended-r Thread 65644.65651 In: thread_fn
59

= 255
=0
=15

https://undo.io/products/udb/
https://undo.io/media/uploads/files/GDB_vs_UDB_2021.pdf
https://undo.io/resources/gdb-watchpoint/gdb-commands-reverse-debugging/

Reverse debugging (5/5KSNEEELICIREE

trial

e TI’ll give you a minute to scan the QR
code, or otherwise you may consider
visiting this link

o https://undo.io/udb-free-trial/

e Okay -- so let’s see how reverse

debugging can help us L

The interactive time travel debugger
for Linux C/C++ for debugging live processes

ulate() wi er. */
(

+));

lextended-r Thread 65644.65651 In: thread_fn
59
= 255
=0
=15

https://undo.io/udb-free-trial/

Reverse debugging (UDB) (1/3)

e The UDB Suite of tools is quite powerful -- so I will show a sample
of ‘recording’ and then traversing that recording
e First- capture the recording

o A few neat things
m You can trigger the recording to start on a particular symbol
m Tools like ‘nm’ can be helpful here to find such symbols

e Then- replay the recording

38

Reverse debugging (UDB) (2/3)

e Here’s an example of loading up
a recording and stepping
forward and backward

e Pretty neat!

39

https://docs.google.com/file/d/1VnhYi8Qn7S0J2br_0cEYo0MKm09fa3KR/preview

Reverse debugging (UDB) (3/3)

e One more demo worth showing
-- this one uses watchpoints

e So instead of hopping around
with ‘next’ -- we can pause on CONDITIONAL

undo | pemro—

data that changes w ATCH POINTS
e You can find interesting data y
(e.g. a ‘train data structure that that react to data changes

might get modified’) as shown

in this example
o *hint* ‘ptype’ can help here in GDB
once you find an object and want to
look at the struct.

Time Travel Debugging - Greg Law - Meeting C++ 2023
https://www.youtube.com/watch?v=qyGdk6QMpMY

40

http://www.youtube.com/watch?v=-CPoea_n7es
https://www.youtube.com/watch?v=qyGdk6QMpMY

Pro Tip: Keep a Journal

e Now that you have done a few

investigations -- take some notes!

o Making lists about what you learned or need
to revisit will be useful!

e Irecommend using whatever
journaling tool is the lowest friction
thing for you

o e.g.physical notebook perhaps, but a
‘Google Doc’ or text file that is ‘greppable’
may be best

o More on note taking systems (e.g. .plan files):

m https:/www.youtube.com/watch?v=S
W1fzrB-UEg

https://garbagecollected.org/2017/10/24/the-carmack-plan

[idsoftware.com]

Login name: johnc In real life: John Carmack
Directory: /raid/mardo/johnc Shell: /bin/csh
Never logged in.

Plan:

This is my daily work ...

When I accomplish something, I write a * line that day.

Whenever a bug / missing feature is mentioned during the day and

I

don’t fix it, I make a note of it. Some things get noted many times

before they get fixed.

Occasionally I go back through the old notes and mark with a +
the things I have since fixed.

--- John Carmack

*

T + + + + + + + + * K ®* * ¥ ¥ ¥ ¥ *

feb 18
page flip crap

stretch console

faster swimming speed

damage direction protocol

armor color flash

gib death

grenade tweaking

brightened alias models

nail gun lag

dedicated server quit at game end
scoreboard

optional full size

view centering key

vid mode 15 crap

change ammo box on sbar

allow "restart" after a program error
respawn blood trail?

-1 ammo value on rockets

light up characters

https://www.youtube.com/watch?v=SW1fzrB-UEg
https://www.youtube.com/watch?v=SW1fzrB-UEg
https://garbagecollected.org/2017/10/24/the-carmack-plan/

How else can we find what’s important?

sudo perf record ./openttd

e Sampling profilers can be sudo perf report

another good tool to see ‘what

Samples: 11K of event 'cycles:P', Event count (approx.): 12994629772
Symbol

Overhead Command Shared Object
hd hd 9 openttd libgomp.s0.1.0.0 [.] ©x00000000000256CO
].S go lng On openttd libgomp.s0.1.0.0 .] 0x00000000000258a0
openttd openttd .] Sprite* Blitter 32bppOptimized::EncodeInternal<false>(std::3|
openttd openttd .] void Blitter_40bppAnil raw<(BlitterMode)0>(Blitter: :Blitte]
. 0 0).34% openttd openttd .1 unsigned char const* std:: max_element<unsigned char const
e A profiler like perf will show =4 . . i
openttd openttd .1 bool _ gnu_cxx::_ op o i operator()<unsigned
3 ottd:game openttd .] Sprite* Blitter_ 32bppOptimized::EncodeInternal<false>(st:
. . 1.33% openttd openttd & i Blitter_32bppOptimized::EncodeInternal<true>(std
3 openttd openttd 3 :initializer_list<unsigned char>::begin() const
you What I I I ay be lnterestlng. openttd openttd . Blitter_40bppAnim::Draw<(BlitterMode)1>(Blitter::
€ openttd openttd .1 unsigned char std::max<unsigned char>(std::initializer list4
. ¢ 5 s). 8 upenttg cpenttg 5 Ge;TileSlope(StrongTépe Typedef<uniigned int, '{]il(.eIndeszgi
8% opentt opentt: .] std::array<SpritelLoader::Sprite, 6ul>::operator[](unsigne
o l.e.the ‘hot paths’in a codebase orae o] iveiiie e

ottd:game openttd .1 unsigned char const* std::_ max_element<unsigned char const*
openttd openttd .] std::initializer_list<unsigned char: nd() const

ottd:game openttd .1 StrongType::Typedef<unsigned int, TileIndexTag, StrongType::
ottd:game openttd .1 RunTileLoop()

openttd openttd .1 ViewportAddLandscape()

openttd libc.so0.6 .1 _ strcmp_avx2

ottd:game openttd .1 bool __gnu_cxx::__ops::_Iter less_iter::operator()<unsigned
openttd openttd .] ResizeSpriteOut(std::array<SpritelLoader::Sprite, 6ul>&, Zoon)
ottd:game openttd .1 CallvehicleTicks()

openttd openttd .1 Colour::Colour(unsigned int)

ottd:game openttd .] ResizeSpriteIn(std::array<SpritelLoader::Sprite, 6ul>&, Zoom
openttd [kernel.kallsyms] _nv044975rm

ottd:game openttd .1 TileLoop Water(StrongType::Typedef<unsigned int, TileIndexTa|
openttd libc.so0.6 .1 _ memmove_avx_unaligned_erms

openttd openttd .1 DecodeSingleSprite(SpritelLoader::Sprite*, SpriteFile&, unsig
openttd libc.so0.6 .1 _int_malloc

openttd openttd .1 AddSortableSpriteToDraw(unsigned int, unsigned int, int, int
openttd openttd .] void GfxBlitter<4, false>(Sprite const*, int, int, BlitterMo|
openttd openttd .1 AllocSprite(unsigned long)

ottd:game openttd .] unsigned char std::max<unsigned char>(std::initializer list:
openttd libc.so. . memset_avx2_unaligned erms

ottd:game openttd .] GetTileSlope(StrongType::Typedef<unsigned int, TileIndexTag,
ottd:game openttd .] AllocSprite(unsigned long)

openttd openttd .] ViewportSortParentSpritesSSE41(std::vector<ParentSpriteToDr3|
openttd openttd .] std::vector<char const*, std::allocator<char const*> >::bac
openttd libc.so. .] malloc

openttd openttd .] StrongType::Typedef<unsigned int, TileIndexTag, StrongType
openttd openttd .] Blitter_40bppAnim::DrawRect(void*, int, int, unsigned char)

https://man7.org/linux/man-pages/man1/perf.1.html

Attaching to a Running Process

sudo perf record -p <pid> -g
sudo perf report

e Note: With most of the tools
I'm showing you today (GDB,
UDB, etc.) it’s possible to

‘attach to a running process’

o This allows us to collect
information from a specific point
and time.

43

https://docs.google.com/file/d/1kQl0kMD8DJNlzKJ4-JJCw8kkncFaT6-d/preview

Visualization: callgrind and kcachegrind (1/2)

There’s a good number of tools
as well that can help you
visualize the profile -

The “Valgrind’ toolsuite
(pronounced: val-grinn) is
another dynamic analysis tool

Valgrind

3

Current release: valgrind-3.25.1

44

Visualization: callgrind and kcachegrind (2/2)

e The goal here is to again ‘sample’ where we execute code
o (The call graphs will look pretty in your journal too)

e Run:

m This grabs a sample every 10000000 basic blocks executed
m Note again: There are some mechanisms to turn on/off sampling if things are
too slow
e e.g.callgrind_control --instr=on
o Documentation for usage:
m https://kcachegrind.sourceforge.net/html/Usage.html

45

https://kcachegrind.sourceforge.net/html/Usage.html

openttd_main(int, char+**)

Types Callers = AllCallers | CalleeMap | Source Code

Visualization: callgrind and kcachegrind (1/3

ll void Bli... =m15.199%

m=34.67 %] |

)|

pp...

e Here’s an example of the output
from ‘callgrind’ visualized in
‘kcachgrind’

e Simply run:

BELYE= |

=l e e PO

void Blitter_32b
| 1 - |
| ||| void litter... T2.55%

o

-

i

o (from the directory where the output
of callgrind is dumped)

l\,,
|}
I3
i
| . A
: openttd_main(int, char**)
| !
(.) —99.98 %
. E) —
;_ - X

VideoDriver_SDL_Base::MainLoop()

99.98 %

Parts | Callees | call Graph | AllCallees = cCallerMap = Machine Code

Visualization: callgrind and kcachegrind (2/3)

e Again, as you find things interesting, you can

explore the call graph
e kcachegrind has a way to ‘search’ for

functions

o Using the ‘called’ column, you can find what may be

important F&lat Profile

(=2]E]

Q| (No Grouping) ~

Search: |tick
Incl. Self called Function Location
W 49.59 0.00 25 M VideoDriver:Tick() openttd: video_driver.cpp
H 31.92 0.00 18 M CallwindowRealtimeTic... openttd: window.cpp
H 31.92 0.00 18 M SelectGameWwindow::On... openttd: intro_gui.cpp
I 8.780.18 311 ® CallvehicleTicks() openttd: vehicle.cpp, vehicle_base.h, bitmath_...
2.92 0.00 5598 ® Ship:Tick() openttd: ship_cmd.cpp
2.76 0.07 184734 Train:Tick() openttd: train_cmd.cpp, vehicle_base.h, bitma...
1.89 0.02 49 138 M RoadVehicle:Tick() openttd: roadveh_cmd.cpp, vehicle_base.h, bi...
0.36 0.00 5598 M Aircraft:Tick() openttd: aircraft_cmd.cpp
0.23 0.00 311 = CallLandscapeTick() openttd: landscape.cpp
0.19 0.01 311 ® OnTick_Station() openttd: station_cmd.cpp
0.11 0.00 23243 M EffectVehicle:Tick() openttd: effectvehicle.cpp
0.10 0.00 22 112 M DieselSmokeTick(Effect... openttd: effectvehicle.cpp
0.09 0.00 20837 M StationHandleSmallTick... openttd: station_cmd.cpp
0.07 0.00 67 ® StationHandleBigTick(B... openttd: station_cmd.cpp
0.03 0.00 311 = OnTick_Industry() openttd: industry_cmd.cpp
0.01 0.00 1131 ® SmokeTick(Effectvehicl... openttd: effectvehicle.cpp
0.00 0.00 311 ® OnTick Town() openttd: town cmd.cpp

v
Train:Tick()
-—276%

131722

310754

TrainController(Train*, Vehicle*,
bool)
£1.60 %

66615

120982

366 615x

SpecializedVehicle<Train, (Vehicle
L J0:73%

360 987 x

312902
oo es(b
C_10555%

312902 x

Visualization: callgrind and kcachegrind (3/3)

e Note: You can directly view the source from this tool as well

However -- I'd recommend doing a debug session with udb or gdb
and setting a breakpoint at these points of interest

Types = Callers = AllCal

llers Callee Map | Source Code
Ir Source
0 -- From ' /hom / ike/Downloads/open ttd/ p ttd 14 1-source/o| p ttd 14 1/ rc/tra dAcpp'
4106 * @return True if the vehicle still e se 1f 1t ha ist (f t of ¢ ists only).
4107 5
4108 bool Train::Tick()
4109 0.01 {
4110 0.01 this->tick counter++;
41
4112 0.01 if (this->IsFrontEngine()) {
40 000 DarfarmancaAccumul ator framorata (DEE GI_TDATNC) .
l 1184734 x
T
S— [CJ31722x
E— TrainLocoHandler(Train*, bool)
& . E |
|

C12.63%

> ﬁuﬁsw [19532x 120982 x
T "
— “Vehicle ct() const |
N—
|

TrainController(Train*, Vehicle*,

A
Train:UpdateSpeed()

0.16 % 4 £1.60 % £J0.26%

1 166615 x 48
v

2. The pure scale of software and its relation to complexity

Note: By pure scale that is an expression to mean: “The vast size” of the number of files and lines of code in a project. 49

Dealing with Pure Scale of Software

Once you have some idea of the
project flow, it may be time to
‘dive into’ the project into more
specifics

But since we cannot again look at
all of the source, we’ll focus on
reducing scale to the things you

care about
o 1l.e. You don’t necessarily have to
understand about all of the codebase at
once -- often just smaller subsystems

mike@mike-MS-7B17:
3138 text files.
2402 unique files.
1371 files ignored.

github.com/AlDanial/cloc v 1.98 T=1.86 s (1293.4 files/s, 534526.5 lines/s)

308781

188428
C/C++ Header 123108
D 93912
make 16050
CMake 11791
INI 5023
JSON 3140
HTML 3106
Squirrel 3050
Markdown 3011
YAML 2819
Objective-C++ 1742
SVG 1353
C 670
awk 217
XML 199
diff 174
Python 168
TypeScript 122
PowerShell 113
JavaScript 86
Tcl/Tk 52
Bourne Shell 41
reStructuredText
DOS Batch
Dockerfile

mi R17

Remember, 300,000+ lines of code -- wow 50

Source code uses ‘text’ as a visualization

e The pure scale (i.e. the size) of
codebases is a challenge, and
since we’ll be looking at a lot of

text...

o If at all possible beg / borrow / steal a
large 4K+ screen, or two screens...

o This is one of the few real hardware
advantages these days for developers

o Given build / test is often remote, a
good screen or screens can be hugely
helpful too (although this has a cost,
so I understand if you'd prefer not to
recommend it to everyone)

com/imagery/roundups/01Y9baNdRmMGOzHcetHQG2FW-36 fit_lim.size 1050x.webp

51

https://i.pcmag.com/imagery/roundups/01Y9bqNdRmGOzHcetHQG2FW-36.fit_lim.size_1050x.webp

Windows/Screen Management

e Another less technical
(but important)
suggestion

e Find a good window

manager
o Either for your operating
system, or a multiplexer
(e.g. tmux) if you're
working in terminal.

e The number of times
I’'ve needed to compare
code side-by-side can
be very helpful to see
‘what have I missed’

multitexturenaterial;

pipeline, materials, texture
import bindbe.opengl

b
e HuVU\'evturr—Nalenal THaterial(

e Arexnin
Texture nTextur
Texture nTextured;

€1,
turer1eliane2
textureFileNane3,
tureFileNaned

t .
in nUnifornap) {
iveTexture(GL TEXTURED
xture(GL TEXTURE 20, mr xturel.nTextureID!
Siniformaapt 1.5et(

in nUniforn!
xture (6L TE)

g -ture(levEUuKE vn Texture2.aTextureIo);

mUniformiap(t(1);

glA L_TEXTURE?
SUBindToxcure el TEXTORE 20 exture. Texturelo)
Bun formiapl 1.set(

in nlniforstap) {
ture(oL TEXTORE

GiBindTexture (6l TEXTURE ’D mnm.m\ nTextureId) ;

nUni formtapl 1.set(

aterials/multitexturenaterial.d

module normalnapnaterial
mort pipeline, mater
inport bindbe. opengl
atbedonap;
normatnap;

a1
Textirs (normatkap . vIexCoords) - rgb
4(colors, 1.0)/2 + vecd(normals

s(str ing pipelineN:

(pipelineNane) ;

nTexturel Texture(textureFileNane)
TTXtured = new Texture narmamcpFLLehane)

TextureMaterial..Update()
rride void Update(){ SOL Setup SDL Setup SDL Setup

PipelineUse(nPipelineNane); ea r DL on Linux

niforns for our mest Your SDL vereion toaded w 30.0

n mUniformiap) {

glhctiveTexture(cL TEXTURED); Note: If SDL2 was loaded, it *may*
ndTexture(GL TEXTURE 2D, Text: be conpatible with SDL3 function calls,

1.5et(but some functions diff

any unifor h
(n vamrmH.:pH
OLicHveresture (€ TETN
FiToxsure 6L TEXTURE 20 ATexture?. aTexturelD)
Sinitarenent 1.5et(1);

56
Shading Language: 4,16 NVIDIA via Cg conpiler

nalnap and # 3 (shader debug info)=—
ATUS = 1

ATTACHED_SHADERS = 0
GL ACTIVE ATTRIBUTES
nane:aPosition location:0
name:aTe i1

Py me:albedonap Location
type:oamplerzd nome:norsatnop
2) fpermats name:bodel
natd name
1y ype:natd nane atior

Uniforns autonatically parsed fron: ./pipelines/ ert.glsl
[*u atd uhodel;”, umfurm nata uviey; . “unifom mate uprojection;]
Uniforns automatically parsed fron: Iplpelines/nomaliafrag.gist
[*uniforn sanpler2D albedonap;*, *uniforn sampler2d normalmap;”]
512

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I gl
I SiniTarenont
I 3
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Caners. Position:

AU naterials/nomalnapnaterial.d B I shutting e

| primarily use tmux and VIM to split my windows. Find some
tools you are otherwise comfortable with

52

https://github.com/tmux/tmux/wiki

Generate your Documentation (1/3)

e By now hopefully you've found a
few useful functions Code Documentation.

o Perhaps using udb, kcachegrind, etc. A
utomated.

e But how to keep notes of what
was important?
No docs in your project? AT ~
No problem -- generate them

yourself
o Doxygen, Doxypress, or other
documentation generates can be
helpful here

https://www.doxygen.nl/

53

https://www.doxygen.nl/

Generate your Documentation (2/3)

e *Example Video* in 1-minute doxygen -g
e For more configuration options doxygen Doxyfile
check: f —

o https://www.youtube.com/watch?v=t
LPHOMosF9M

54

https://www.youtube.com/watch?v=tLPHQMosF9M
https://www.youtube.com/watch?v=tLPHQMosF9M
https://docs.google.com/file/d/1nWQf8uGAoT2YiIf1EUvBi-Yi977TpOAY/preview

Generate your Documentation (3/3)

e Some more examples of what is generated
o left: documentation extracted from functions and members of types

o right: inheritance diagrams

Classes

struct AcceptedCargo
struct ProducedCargo

struct ProducedHistory

Public Types
using P Array = std::array< Pr argo, INDUSTRY_NUM_OUTPUTS >
using A df Array = std::array< dCargo, INDUSTRY_NUM_INPUTS >
Public Types inherited from Pool< Titem, Tindex, Tgrowth_step, Tmax_size, Tpool_type, Tcache, Tzero >::Poolltem<&_industry_pool >

Public Member Functions

Industry (Tilelndex tile=INVALID_TILE)

void RecomputeProductionMultipliers ()

bool TileBelongsTolndustry (Tileindex tile) const
ProducedCargoArray::iterator GetCargoProduced (CargolD cargo)

ProducedCargoArray::const_iterator GetCargoProduced (CargolD cargo) const

AcceptedCargoArray:iterator GetCargoAccepted (CargolD cargo)

bool IsCargoAccepted () const

bool IsCargoProduced () const

bool IsCargoAccepted (CargolD cargo) const

bool IsCargoProduced (CargolD cargo) const

const std:string & GetCachedName () const

Functions inherited from Pool< Titem, Tindex, Tgrowth_step, Tmax_size, Tpool_type, Tcache, Tzero >::Poolltem<&_industry_pool >

Static Public Member Functions

static Industry * GetByTile (Tilelndex tile)

Industry Struct Reference

#include <industry.h>

Inheritance diagram for Industry:

Collaboration diagram for Industry:

ViewportSign

jldingCounts< uint16_t > TownCache
BuildingCounts< uint16_t > < L

TransportedCargoStat
< uint16_t >
~
Pool< Titem, Tindex,
size, Tpool_type, Tcache,

Tzero > Poolltem<a_town_pool >

TransportedCargoStat
<uint32 t>

TrackedViewpoSign le
)

Pool< Titem, Tindex,

size, Tpool_type, Tcache,

TTzero >::Poolitem<&_industry_pool >

e

StationRect |«

55

Recap and Some Observations

No documentation -- no problem
o Generate your own using Doxygen,
Doxypress, or other tools to extract
information out.
o Can often use your compiler to see the
dependencies at the least
Viewing the ‘doxygen’ files (or any
documentation) gives you hints as

a developer to a few things
o How are things named?
m i.e.the naming convention
o How are ‘errors’ propagated (return
codes or exceptions?)

Take a few notes of this -- it will
help you when it does become
time to submit for code review!

Public Attributes

uint32_t name_2
Parameter of name_1.

StringlD name_1
Name of the company if the user did not change it.

std:string name
Name of the company if the user changed it.

StringID president_name_1
Name of the president if the user did not change it.

uint32_t president_name_2
Parameter of president_name_1.

std:string president_name
Name of the president if the user changed it.

CompanyManagerFace face
Face description of the president.

Money money
Money owned by the company.

byte money_fraction
Fraction of money of the company, too small to represent in money.

Money current_loan
Amount of money borrowed from the bank.

Money max_loan
Max allowed amount of the loan or COMPANY_MAX_LOAN_DEFAULT.

Local file from Doxygen generated documentation:
file:///home/mike/Downloads/openttd/openttd-14.1-source/openttd-14.1/html/structCompanyPr
operties.html

Code you do not own

In any big project, there will also be code that you do not own
For example, shared libraries

Finding shared libraries is easy
o Just run a tool like 1dd (Dependency Walker on Windows is also quite nice)

You'll often get some hints of what ‘graphics libraries’ to otherwise
pay attention to.

(e-MS-7B17:build$ Lldd openttd

linux-vdso.so.1l (0x00007ffcc2decO00)

libpngl6.50.16 => /1ib/x86 64-1linux-gnu/libpngl6.s0.16 (0x0000705b9a3b1l0O00)

libz.so.1 => /1ib/x86 64-1linux-gnu/libz.so.1l (0x0000705b9a395000)

liblzma.so.5 => /1ib/x86 64-1linux-gnu/liblzma.so0.5 (0x0000705b9a363000)

11bf1u1dsynth s0.3 => /1ib/x86 64-linux-gnu/libfluidsynth.so0.3 (0x0000705b9a27c000)
.0.50.0 => /1ib/x86 64-1linux-gnu/1ibSDL2-2.0.50.0 (Ox0000705b97824000)

libfreetype.so.6 => /1ib/x86 64-linux-gnu/libfreetype.so.6 (0x0000705b97758000)

libfontconfig.so.1l => /1ib/x86 64-linux-gnu/libfontconfig.so.1l (Ox0000705b97707000)

libharfbuzz.so.0 => /1ib/x86 64-linux-gnu/libharfbuzz.so.0 (0x0000705b975fab00)

libicuil8n.so.74 => /1ib/x86 64-linux-gnu/libicuil8n.so0.74 (0x0000705b97200000)

https://www.dependencywalker.com/

@ std:optio... B

Zeal Docs (or Dash) e —

C++ Utilities library std: :optional

@ [std:experimental::optional

@ [std:make_optional & I

@ [@ std::experimental:make_optional ..

@ [@ std:hash<std::optional> std:: 0 ptl O n a

g@ th(;:s"‘é?p(“df:pt:to“a?d — Defined in header <optional>

0 eduction guides for std::optiona
e For these function calls, I & B sexecutonistopped ss opt.. templates class T> ey
@ @ experimental library header <ex... class ()ptlc'nal !
hd b hd @ [std:experimental:swap(std:exp...
recommend ﬁndlng faSt Of.f].lne @ [@ std:hash <std:experimental:op... The class template std: :optional manag
documentation & 0 opertorem . < .o oo, A COMMON use case for optional is the ret
. Docsets = a] X
o no latency, and usually easier to
. Installed | Availabl
organize and keep tabs —
. @ CG++ Update available
o Sometimes more powerful search i
€ GLi
options as well

2 Vim

m e.g. fuzzy search
e Note:

o These tools in combination with
code you own can also be useful

58

Downloading: 1. | @cancel |

Still too much? Try Running Examples/tests

Try to reducing the scale of the
project further

If you’re working in a
framework, then running some

of the smaller samples
o e.g.agraphics library likely has
tutorials out there

If you’re lucky, there may also
be some ‘tests’ that mock or
showcase behavior.

mike@mike-MS-7B17:

1$ tree src/tests/

bitmath func.cpp
CMakeLists.txt
landscape partial pixel z.cpp
math func.cpp

mock environment.h
mock fontcache.h

mock spritecache.cpp
mock spritecache.h
string func.cpp
strings func.cpp

test main.cpp

test script admin.cpp
test window desc.cpp

59

Some Other Tips (1/3)

e Some of you have the fortune of
working on nicely formatted

codebases
o If your codebase is ‘ugly’ -- consider
running clang-tidy, indent, or similar
formatting tools to reformat and unify
the code.

e There’s a world coming soon
where we’ll need different
abstractions to visualize our code
-- perhaps you’ll come up with
other neat abstractions (e.g.

“software cities”)
o https://ieeexplore.ieee.org/document

/4290706
o https://www.cs.nmt.edu/~jefferv/city

-surv.pdf

60

https://clang.llvm.org/extra/clang-tidy/
https://en.wikipedia.org/wiki/Indent_(Unix)
https://ieeexplore.ieee.org/document/4290706
https://ieeexplore.ieee.org/document/4290706
https://www.cs.nmt.edu/~jeffery/city-surv.pdf
https://www.cs.nmt.edu/~jeffery/city-surv.pdf

Some Other Tips (2/3)

° Study Design Patterns
Yes, they’re not perfect, but traditional patterns like ‘observer’, ‘visitor’, etc. tend
to show up.
m These are found in the ‘Design Patterns’ or ‘Gang of Four’ book
o Other sorts of software design things (e.g. ‘event-loop’, ‘component-pattern’,
‘plugin-system’) are also good to search for examples.

o Often times writing a toy version of these patterns can help you understand the
context in a larger system.

e In some cases, you can try to find an application that may be similar
to what you’re developing, and learn about how that system is

documented.

o There may be some hints within software case studies otherwise if your software
has absolutely no documentation on its architecture by looking at related
software.

o See: https://aosabook.org/en/

61

https://en.wikipedia.org/wiki/Design_Patterns
https://aosabook.org/en/

Some Other Tips (3/3)

e Text editor and IDE Support continues to improve.
o l.e.inference of types and other information often available as needed.

int main() {
auto lang = "CA
std: :cout Hello and welcome to " lang EEND

local variable
const char *lang

std::string str;

62

3.

Human factors can additionally contribute to making your life harder

63

Human Factors

e We have some tools now to help us
understand the control flow and working at
scale.

e But sometimes the hardest problems in
software are sometimes -- i.e. human factors

e¢ What I mean by thisis -- how do I get
motivated or focused to actually learn a

codebase?

o My best answer is to put a real problem in front of
you that you will learn from!

https:/miro.medium.com/v2/resize:fit: 1400/1*nOZxRBAQwq8FZ-IINAG30W@2x.jpeq

64

https://miro.medium.com/v2/resize:fit:1400/1*nOZxRBAQwq8FZ-IlNA630w@2x.jpeg

Find a first good task (1/3)

With a large codebase, we might
get some direction by literally just
solving a problem.

O

If you're lucky, your code base will be
labeled with ‘good first tasks’

Good first tasks are ‘byte sized’ -- i.e.
small, and picked out by engineers on
your team

For our project today -- observe
there is a Development tab on the
website.

O

https://www.openttd.org/development

Home

Download stable (14.1)
Download testing (15.0-beta2)
Download nightly (20250610)

* OPeNTTD

About Manual Screenshots Community Contact Donate

Servers Development Forum

Translating

If you would like to help translating the game, please

join our translation team on GitHub (you will need a GitHub account).
After joining you get access to our Web Translator.

What to do When You Find a Bug

When you think you found a bug in OpenTTD you should:

Make sure you are running a recent version, i.e. run the latest stable, testing or nightly based on where you
found the bug.

Make sure you are not running a non-official binary, like a patch pack. If you are playing with a patch pack you
should report any bugs to the forum thread related to that patch pack.

Make it reproducible for the developers. In other words, create a savegame in which you can reproduce the issue
once loaded. For Windows users it is very useful to give us the crash.dmp and crash.log which are created on
crashes.

Check whether the bug is already reported on our bug_tracker. This includes searching for recently closed bug
reports as the bug might already be fixed.

When you are certain it is an unknown bug you should make a bug report at our bug tracker. The bug report must
contain a savegame, preferably crash.sav and the last (automatically) saved savegame. It must also contain
crash.log and crash.png (if they were created). For crashes on Windows must attach the crash.dmp files too. For
bugs in nightlies you must also specify the revision of the nightly.

65

https://www.openttd.org/development

Find a first good task (2/3)

e Searching for ‘bugs’ or ‘issues’ are a great place to start
e Often time these issues will be labeled

O OpenTTD / OpenTTD Q Type (7] to search 8 - + -~ ||®

<> Code () Issues 188 191 Pullrequests 135) Discussions (® Actions @ Security |~ Insights

Want to contribute to OpenTTD/OpenTTD? Dismiss ~

If you have a bug or an idea, read the contributing guidelines before opening an issue.
If you're ready to tackle some open issues, we've collected some good first issues fopyqu

is:issue state:open Q © Labels > Milestones m

Open 188 Closed 8,391 Author ~ Labels ~ Projects ~ Milestones ~ Assignees ~ Types ~ =1 Newest ~

(® [Crash]: Video driver install triggers fatal blitter assertion "_screen.dst_ptr != nullptr"” O3

#14350 - GreenReaper opened 6 hours ago

(® [Bug]: German industry names should be [industry] [town name] 0>

#14342 - RiedleroD opened 3 days agc

© [Bugl: Compames in multlplayer can be in the red for years before going bankrupt (EXHUITD

#14328 - bjornwarmedal opened last w

https://qithub.com/OpenTTD/OpenTTD/issues

66

https://github.com/OpenTTD/OpenTTD/issues

size: large

Find a first good task (3/3) e s

e Of the labels for this particular project, I found
two that are probably good ‘starting places’ €D

o l.e.theyimply a small amount of work

waiting on author

waiting on runner update

work: minor details

https://qithub.com/OpenTTD/OpenTTD/issues

https://github.com/OpenTTD/OpenTTD/issues

If you are not assigned a good ‘first task’:

’ ¢ ’
e Don’t forget about our tool ‘grep T 4.1 grep -ifn -1 --include=*.cpp "T0D0" ./src/
o Try Searching for ‘TODO’, :FIXME, or 1069: irt](éizxér;g’tjnlggﬂzgg? ;E(l)afetm';’ectory(Searchpath: :SP_AU WNLOAD D
‘Later’ as ‘keywords, 3 X : if ((_show_ ; &2) '=0) StrﬁenWa;ningf;("'{)'
. /* Abusing _show to replace "warning" with "info" for trang
o If you're lucky, you may find notes “show_todo &= 3;
: : . if (!this->translation) _show 5
Somethlng hke" , if (7shovlv7 s->translated.empty()) {
m “Thisis 'hard-coded' and should be R ke vt
ﬁxed later” 934 "~ const char *s = "<T0D0> "
m “FIXME, this is a ‘magic constant’ - R Ll
that should be loaded from a
Config file...” "o -- replace any untrans
if ((_show &2) 1=0) {
| | etc. ;i g xeeg ‘;o fﬁndkwgich.te{minal ((1)r zgnga;) the'vget
> > —_ - : eel 0 chec erminal we're lan ing to. S I
([] g rep -1rn _I -~ 1nC:|.Ude—* . Cpp d : Perhaps we should use it for all the name generators? --pasky */
n TODO n /S rC/ 11: *.@ separate this file into two
. 374 _searchpaths[SP_AU WNLOAD_PERSONAL_DIR] = tmp;
98 case SP_AU WNLOAD_DIR: // Otherwise we cannot downlod
o TODO Show an example of how to query searchpaths [SP_AUTODOWNLOAD_PERSONAL DIR XDG] = tmp;

searchpaths[SP_AU WNLOAD_PERSONAL _DIR XDG] = tmp;

I3 . . 9 . . i
for small glt diff messages In the glt log' searchpaths[SP_AUTODOWNLOAD PERSONAL DIR XDG].clear();

o Ideally can do this in a ‘subsystem’

“searchpaths[SP_AU WNLOAD_PERSONAL DIR] = tmp;
_searchpaths[SP_AU WNLOAD_PERSONAL_DIR].clear();

you’re WOI'kil’lg in or interested in. 1 /* If we have network we make a directory for the autodownloading of content */
: : _searchpaths[SP_AU WNLOAD_DIR] = _personal_dir + "content_download" PATHSEP;
© Theglthub messages ShOU'ld glve some Debug(misc, 3, "{} added as search path", searchpaths[SP_AU WNLOAD DIR]);
hints about what is going on, or at the FioCreateDirectory(_searchpaths[SP_AU WNLOAD DIR]); s
FioCreateDirectory(FioGetDirectory(SP_AU WNLOAD DIR, dirs[il));
least the code Change. /* : Regarding this, when we do gradual loading, we
G currently this only works for AI companies

* [@B8: give a warning message */
* M@l Rewrite the arder GIT tn not nse different WindowDescs

68

More ideas for ‘first’ tasks

e Another idea is to try fixing some 'warnings' in the code.
o Not glorious, but at the least can give you some practice.
e Probably more exciting is to try to ‘add’ something

o This might be adding another item to a ‘listbox’ user interface widget
m That will teach you if this data is hard-coded, comes from a configuration
file, is downloaded, etc.
m Again, it will probably give you an idea of how some system works.

e Exercise: Try using udb or gdb to ‘track’ what function is called

when you click on something.

o udb has live recorder for tracking changes, and otherwise we can use our grep
skills to search the codebase

69

https://undo.io/products/udb/
https://www.sourceware.org/gdb/

Human Factors: Asking for Help (on a team)

e Don't be arrogant, and be always be nice to your teammates.

©)

Empathy matters a lot when working on teams, and it helps when you want to ask
each other questions!

e "If you don't know, just ask"

@)

If you’re a junior engineer, then bring what you have tried/learned for the
problem you have solved
If you’re a senior engineer, make a note of where reoccurring questions may be
coming from in the project.
m Generally, don’t put juniors in uncomfortable positions either -- sit down
with them when they first join your team to help them get acquainted!
m Screen record your session if appropriate, or let junior engineers take a
picture of the whiteboard

70

Bonus Round: Al

71

Does Al Solve this problem?

e I'm not sure -- yet (sorry!)
o Butif you have access to enterprise Al tools (i.e. where it’s safe to paste some code
in if you’re working at a company) -- they may help summarize what code is doing.
e Some spaces to watch out for

o Code/context summarizers (e.g. https://sourcegraph.com/)
o Debugging assistants chatDBG
o All of these tools will likely continue to improve, so keep an eye on this space!

72

https://sourcegraph.com/
https://github.com/plasma-umass/ChatDBG

Does Al Solve this problem?

e It's getting there, but there's a way to go
o Butif you have access to enterprise Al tools (i.e. where it’s safe to paste some code
in if you’re working at a company) -- they can help summarize what code is doing,
answer your questions about the codebase, help with basic tasks.

e Some spaces to watch out for
o Code/context summarizers (e.g. https://sourcegraph.com/)
o Debugging assistants chatDBG
o Claude Code terminal based collaborative coder
o Undo's Al integration coming soon (see the lightning talk by Rashmi time TBC)

e Things to watch out for
o Als get distracted if something looks like something they have seen before
o They can be very convincing, especially when you don't know the codebase either
o They rarely challenge you or defend their positions with evidence
o "Trust but verify" is the safest approach today

73

https://sourcegraph.com/
https://github.com/plasma-umass/ChatDBG
https://www.anthropic.com/claude-code

More Resources

74

Talks on Tools / Debuggers (Linux Focus)

e Debugging and Tools

o Time Travel Debugging - Greg Law - Meeting C++ 2023

m https:/www.youtube.com/watch?v=qyGdk6QMpMY
e Note: Example of following ‘data’

o Back to Basics: Debugging in Cpp - Greg Law - CppCon 2023
m https:/www.youtube.com/watch?v=qgszy9GquRs

o Back to Basics: Debugging in C++ - Mike Shah - CppCon 2022
m https:/www.youtube.com/watch?v=YzIBWqWC6EM

o Cool New Stuff in Gdb 9 and Gdb 10 - Greg Law - CppCon 2021
m https://www.youtube.com/watch?v=xSnetY3eolk

o CppCon 2018: Greg Law “Debugging Linux C++”
m https://www.youtube.com/watch?v=V1t6faOKjuQ

o CppCon 2016: Greg Law “GDB - A Lot More Than You Knew"
m https://www.youtube.com/watch?v=-n9Fkqiebsg

e Time Travel Case Studies

o Quake 2 https://www.jwhitham.org/2015/05/review-undodb-reversible-debugger.html
o Doom - Reviving a zombie: https:/www.voutube.com/watch?v=t]JL.Z1dabxs

75

https://www.youtube.com/watch?v=qyGdk6QMpMY
https://www.youtube.com/watch?v=qgszy9GquRs
https://www.youtube.com/watch?v=YzIBwqWC6EM
https://www.youtube.com/watch?v=xSnetY3eoIk
https://www.youtube.com/watch?v=V1t6faOKjuQ
https://www.youtube.com/watch?v=-n9Fkq1e6sg
https://www.jwhitham.org/2015/05/review-undodb-reversible-debugger.html
https://www.youtube.com/watch?v=tjJLZ1da6xs

sSummary

We have many tools to help us!

e For Understanding the control flow
o Use debuggers and profilers to find what is important and ‘slow down’
m ‘attaching’ to live running processes is incredibly helpful

e The pure scale of software is often one factor.
o Try to reduce the scale
m Use documentation tools and visualizations

e docs are also easy to ‘bookmark’ and recall over time as you understand
software
m Take your own notes as you learn!

e Human factors can additionally contribute to making your life
harder

o Find ‘small’ problems to understand first
o Don’t be afraid to ask for help

76

C++ FRench

User C’{r'oup

Développeurs C++ de tous les pays, renconJrrez—vous!

Thank you!
Understanding Large and Unfamiliar

Web: mshah.io 60 minutes | Intermediate Audience
@ Youlube www.youtube.com/c/MikeShah 19:00 - 20:00 Thur, June 19, 2025

Social: mikeshah.bsky.social
Courses: courses.mshah.io
Talks: http://tinyurl.com/mike-talks

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Thank you!

