
Understanding Large and Unfamiliar
Codebases

1

Web: mshah.io 60 minutes | Intermediate Audience
 www.youtube.com/c/MikeShah 19:00 - 20:00 Thur, June 19, 2025

Social: mikeshah.bsky.social
Courses: courses.mshah.io
Talks: http://tinyurl.com/mike-talks

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

2

Talk Abstract: It's your first day on the job as a new employee. You set
up your workstation and then download a repository of over 1,000,000
lines of code. Even more intimidating, the code has been around for 20
years and has parts of it in legacy C++ and also using tentative C++ 26
features from various libraries. You feel overwhelmed! Don't fret
however! In this talk, I provide you a collection of tools to help software
engineers of all levels understand what is going on in large unfamiliar
codebases. The audience will leave this talk with a few simple and
advanced tricks for navigating large and complicated codebases.
https://cpponsea.uk/2025/session/understanding-large-and-unfamiliar-codebases

https://cpponsea.uk/2025/session/understanding-large-and-unfamiliar-codebases

Your Tour Guide(s) for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

3

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Question to the Audience:
What’s the biggest codebase you have ever worked on?

(i.e. the approximate lines of code)

4

What’s the biggest codebase you have every worked on? (2/3)

5

Follow-up question(s):

1. Did that codebase ever get smaller?
2. Did that codebase become less complex over time?
3. How well was that codebase documented?

a. i.e. Could I go find tutorials, internal wiki pages, or internal/external videos
explaining the code or architecture?

4. Did anyone say “Scrap the project -- let’s rebuild it from scratch”?

What’s the biggest codebase you have every worked on? (3/3)

6

Follow-up question(s):

1. Did that codebase ever get smaller?
2. Did that codebase become less complex over time?
3. How well was that codebase documented?

a. i.e. Could I go find tutorials, internal wiki pages, or internal/external videos
explaining the code or architecture?

4. Did anyone say “Scrap the project -- let’s rebuild it from scratch”?
a. ^Sometimes we feel this way -- but it can be hard to convince a business to throw

away thousands/millions of lines of code :)

How Big are Codebases (1/2)

7

● Today we are talking about
large and unfamiliar codebases

● I think we have an idea of what
this means, but the scale I’m
interested in is anything from
tens of thousands of lines, to
billions of lines of code (e.g.
monorepo)

○ i.e. Big enough you cannot keep the
whole design in your head

● Note:
○ The figure on the right gives a very

rough approximation of various
codebases. Figure source:

https://external-preview.redd.it/RP36x-Dy-3iZn_CEMh_mEfs7GlgvhjKlasyWAQk2v_M.jpg?auto=webp&s=b6177113412f10a5c9a2672738736d4e8647883d
Wired Article for more on code sizes: https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

https://external-preview.redd.it/RP36x-Dy-3iZn_CEMh_mEfs7GlgvhjKlasyWAQk2v_M.jpg?auto=webp&s=b6177113412f10a5c9a2672738736d4e8647883d
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

How Big are Codebases (2/2)

8

● For a reference of scale --
○ “A million lines of code, if printed, would be about

18,000 pages of text. That’s 14x the length of War
and Peace.”

■ https://www.visualcapitalist.com/millions-lin
es-of-code/

● That’s a lot of ‘text’, architecture,
subsystems, etc. to keep in our head!

Figure source:
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstac
k-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6b32b94-f99e-498f-840b-4cf789c6503c_1
536x2048.jpeg

https://www.visualcapitalist.com/millions-lines-of-code/
https://www.visualcapitalist.com/millions-lines-of-code/
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6b32b94-f99e-498f-840b-4cf789c6503c_1536x2048.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6b32b94-f99e-498f-840b-4cf789c6503c_1536x2048.jpeg
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6b32b94-f99e-498f-840b-4cf789c6503c_1536x2048.jpeg

Question to the Audience:
What makes a codebase hard to understand?

9

What makes a codebase hard to understand? (2/4)

10

● Understanding the logical
control flow (and/or data flow)

○ Where are the entry points?
○ Are there threads / fibers / coroutines
○ What are the ‘hot spots’ and important

subsystems
○ Where does ‘state’ change in the

program
○ What is a specific function doing?

■ Is the name of the function
reflective of what it does?

■ Are the parameters named well
and consistent? To the right is a visualization of a ‘Data Flow Analysis’. This is useful once

you know the isolated fragment(s) of code you want to look at (but this
visualization technique otherwise does not work on the entire codebase).
https://blog.jetbrains.com/clion/2023/11/striving-for-better-cpp-code-part-i
-data-flow-analysis-basics/

https://blog.jetbrains.com/clion/2023/11/striving-for-better-cpp-code-part-i-data-flow-analysis-basics/
https://blog.jetbrains.com/clion/2023/11/striving-for-better-cpp-code-part-i-data-flow-analysis-basics/

What makes a codebase hard to understand? (3/4)

11

● The pure scale of software and its
relation to complexity

○ i.e. The number of lines of source code
● Different variations of code

○ e.g. Legacy C++ mixed with C++26
○ Different ‘design patterns’ or architecture

design within the source code

‘source code’ we visualize as text -- printing out the code will
look something like the bottom-right image.

What makes a codebase hard to understand? (4/4)

12

● Human factors can
additionally contribute to
making your life harder

○ Team size / structure
○ Accessibility to code that you may

not own.
■ (Is all the code in the same

repo, or do you need
permission to view other
libraries?)

○ No version history or
documentation of the ‘why’
something evolved

○ Undocumented code that only a
‘senior engineer’ understands, and
everyone is afraid to touch.

Every heard of Conway’s law? Organizational
structure can potentially impact the very structure
of code itself!
https://www.jeffwinterinsights.com/insights/conways-law-enterprise-architecture

https://www.jeffwinterinsights.com/insights/conways-law-enterprise-architecture

Question to the Audience:
Why do folks think I’m talking about this topic?

13

Why do folks think I’m talking about this topic? (2/3)

14

● Answer: It was an honest difficulty of mine
when I started out as a software engineer!

● (more on next slide)

Ah, I have found memories of
TortoiseSVN -- it’s still active as
far as I know!
https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5
d56747737e31e0cf8ba5caa6cebfbfebb9f173e

https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e
https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e

Why do folks think I’m talking about this topic? (3/3)

15

● Answer: It was an honest difficulty of mine
when I started out as a software engineer!

● I remember the difficulty and overwhelming
feeling as an intern learning new tools &
code!

○ (On occasion I consult on short contracts -- so this is
still relevant today!)

○ I suspect there are others in the audience who
remember this daunting feeling too

● It probably feels a bit embarrassing to admit
that feeling on the first day of work!

○ We should not be afraid to ask questions however!

Ah, I have found memories of
TortoiseSVN -- it’s still active as
far as I know!
https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5
d56747737e31e0cf8ba5caa6cebfbfebb9f173e

https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e
https://preview.redd.it/whatdididone-v0-tv7l0uo8hdyc1.jpeg?width=320&crop=smart&auto=webp&s=5d56747737e31e0cf8ba5caa6cebfbfebb9f173e

Where do we learn to read code?

16

● The other reason is that we are are
not always taught many tools or
how to read large codebases in
school or our workplace

○ Let me be clear -- I’m not necessarily
blaming schools -- there is a lot of
computer science to cover.

■ Some large projects in school are
maybe 2-5k lines of code -- but
again not quite the scale we are
talking about for millions of lines of
code

○ Note: I (and many other professors) do
often expose students to large codebases
at various points -- probably some
professors out their doing an excellent
job as well! MIT, Tufts, Yale, UMich, etc. have various courses in this spirit

for helping students learn tools that I know of.
https://missing.csail.mit.edu/

https://missing.csail.mit.edu/

Understanding Large and Unfamiliar Codebases

17

● Now from this talks title, the word ‘understanding’ is important
● We might also mean:

○ The performance of some aspect
○ The memory safety or security of a system
○ Or really any other metric about a piece of software.

● That said -- today we are going to focus more on understanding --
what our code is logically doing -- and what tools can help!

Today we’ll focus on these 3 categories

18

1. Understanding the control flow
2. The pure scale of software and its relation to complexity
3. Human factors can additionally contribute to making your life

harder

Given:
An unknown (open-source) codebase

19

Real World Example: Transport Tycoon (1/2)

20

● Today I’ll give be giving some tips on
understanding larger source code
projects.

● We will look at the video game --
Transport Tycoon

○ Some of you may be familiar with it, and it
is perhaps better if you are not!

○ (Although, I will say it’s a wonderfully
charming game...)

Real World Example: Transport Tycoon (2/2)

21

● If you are following along at home, you
can follow along by picking Transport
Tycoon (https://www.openttd.org/) or
a similar project.

● A good candidate project to practice
with is:

○ Open Source
○ Many collaborators, perhaps of different

levels of seniority/experience
○ Long-lived, and lots of lines of code!
○ Ideally with some ‘git’ history, but not strictly

necessary (i.e. may be fun to practice
applying patches, fixing bugs, etc.)

○ And again -- perhaps even better if you’re not
100% familiar with the project

■ (but perhaps have some domain
experience or interest in the domain)

https://www.openttd.org/

Project Scale

22

● The ‘cloc’ tool will count
the lines of code in a
project

○ This may give some insights
as well if there are multiple
languages used

● Our stats for the Open
Transport Tycoon game
for example are:

○ 188,428 C++
○ 123,108 C/C++ headers
○ 670 lines of C
○ etc.

● Let’s agree this is a large
size codebase to
investigate!

23

1. Understanding the control flow
2. The pure scale of software and its relation to complexity
3. Human factors can additionally contribute to making your life harder

Understanding Control Flow: Run our program!

24

● The very first thing to do, is run
whatever
game/application/service/system/etc
you are building

○ This sounds silly and is obvious,
but you should have a high level
understanding of what your
program actually does is key.

● I will assume that you can build the
software using whatever build system
you are provided.

○ And I fully acknowledge, this it is not often
trivial to build!

Understanding Control Flow: Entry Points (1/3)

25

● One of the first things I like to
do -- is to anchor around the
‘main()’ function

● From the main() function, you
will often get hints as to the
overall software architecture

○ (i.e. are there plugins loaded, is there
an event loop, etc.)

○ Some things you can actively log are:
■ What happens before main (any

initialization code)
■ What happens after (cleanup

code)

In my opinion, a good software engineering practice is to keep
your ‘main’ relatively clean. Observe here, the main entry point
returns to the ‘real main (openttd_main)’

In this particular software, you’ll observe there are also different
‘main’ functions per operating system.

Understanding Control Flow: Entry Points (2/3)

26

● Here’s an example of
finding ‘main()’ with
grep

● grep is a tool for
searching for patterns
within files

○ e.g.
■ grep -irn “main”
■ This does a case

insensitive(i) search,
recursively through
the directory (r), and
provides line numbers
(n) with the filenames

○ This gives us around 37
places to look

https://man7.org/linux/man-pages/man1/grep.1.html

Understanding Control Flow: Entry Points (3/3)

27

● grep is quite powerful, so you will want to spend some time playing
with it

● Here’s a more specific search that gives us around 7 places to look
○ grep -irn -I --include=*.cpp "main()" .

■ -I tells us to ignore binary files
■ --include=*.cpp tells us to look at .cpp files

Pro Tip: Debug Symbols (1/2)

28

● grep is going to be quite useful,
but it can sometimes be a
‘treasure hunt’ if we do not
know what we’re looking for

● Remember -- we can simply
run our program

○ And you did compile with debug
symbols (i.e. ‘-g’) right?

A nice write up on Debug information is here:
● https://developers.redhat.com/articles/2022/01/10/gdb-develop

ers-gnu-debugger-tutorial-part-2-all-about-debuginfo
● https://undo.io/resources/guide-to-symbols-debug-info/

Note: If you’re in a live system, you can ‘gdb -ex 'attach $PID'
app.debug’ add debug info as well -- but let’s assume we have our
debugging symbols in order!

https://man7.org/linux/man-pages/man1/grep.1.html
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://undo.io/resources/guide-to-symbols-debug-info/

Pro Tip: Debug Symbols (2/2)

29

● Note: A **key** that will make
your life easier

○ Build/Compile with debug
information!

■ cmake -DCMAKE_BUILD_TYPE=Debug ..

○ In some instances, this may also
include making sure to build 3rd
party libraries in debug as well

● Debug information is useful
for helping you inspect and
gather more information about
your programs execution with
the tools we will use

A nice write up on Debug information is here:
https://developers.redhat.com/articles/2022/01/10/gdb-develope
rs-gnu-debugger-tutorial-part-2-all-about-debuginfo
Note: If you’re in a live system, you can ‘gdb -ex 'attach $PID'
app.debug’ add debug info as well -- but let’s assume we have
our debugging symbols in order!

https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo
https://developers.redhat.com/articles/2022/01/10/gdb-developers-gnu-debugger-tutorial-part-2-all-about-debuginfo

Step-by-Step debugging (1/3)

30

● So now we have a ‘large
unfamiliar codebase’ that we
have compiled in ‘debug’

● So we can use a ‘debugger’ to
step through the execution

○ And of course use a ‘debug build’ of
the source.

● Let’s repeat our first task of
finding main() that we did with
‘grep’, but this time with a
debugger

You can learn more about how debuggers work
here: https://aosabook.org/en/v2/gdb.html

https://aosabook.org/en/v2/gdb.html

Step-by-Step debugging (2/3)

31

● GDB is a good free
debugger to start with

● In this video, I attach
a debugger to a
running process

○ ps aux | grep ‘openttd’
■ This gives me the

name
○ Then I attach to the

running process
■ sudo gdb -p pid

● next slide for more!

https://sourceware.org/gdb/
https://docs.google.com/file/d/1Uf2QlHA_vfvzmiWx-YP_t2BQdp8JzNFy/preview

Step-by-Step debugging (3/3)

32

● Once you have the ‘main()’
function, you can start stepping
through the code.

● Some important commands in
GDB

○ Ctrl+C // Pause running program
○ br main() // breakpoint in main
○ c // continue
○ s // to step into a function
○ n // next line
○ f // finish the stack frame

■ Useful if you’re in library code
you do not own

○ bt // print out the backtrace
○ kill // to exit the process, but stay

in GDB

GDB Cheat sheet (page 1 of 2)
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Reverse debugging (1/5)

33

● Just a brief aside on
debuggers

● At some point you will
probably have this
experience.

○ So it’s worth mentioning
‘reverse-debuggers’ or
‘time travel debuggers’ to
you :)

https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp
&s=5b03b0d54dbe429bace5820da37a2345682eaada

https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada
https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada

Reverse debugging (2/5)

34

● Just a brief aside on
debuggers

● At some point you will
probably have this
experience.

○ So it’s worth mentioning
‘reverse-debuggers’ or
‘time travel debuggers’ to
you :)

https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp
&s=5b03b0d54dbe429bace5820da37a2345682eaada

https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada
https://preview.redd.it/e4b0jejmlxxz.png?width=1080&crop=smart&auto=webp&s=5b03b0d54dbe429bace5820da37a2345682eaada

Reverse debugging (3/5)

35

● Reverse debuggers (since GDB 7.0) allow you to ‘reverse-step’ or
‘reverse-next’ where you are.

● This is very useful during your code exploration!

https://sourceware.org/gdb/wiki/ReverseDebug

https://sourceware.org/gdb/wiki/ReverseDebug

Reverse debugging (4/5)

36

● UDB from Undo is another invaluable
tool I’ll demonstrate shortly.

● UDB effectively uses the same GDB
commands -- so if you know one, you
know both!

● More information
○ Performance Differences between UDB and

GDB [link]
○ If you can’t use a reversible debugger? , then

click this link for the GDB equivalents to try

QR code to UDB
trial

https://undo.io/products/udb/
https://undo.io/media/uploads/files/GDB_vs_UDB_2021.pdf
https://undo.io/resources/gdb-watchpoint/gdb-commands-reverse-debugging/

Reverse debugging (5/5)

37

● I’ll give you a minute to scan the QR
code, or otherwise you may consider
visiting this link

○ https://undo.io/udb-free-trial/
● Okay -- so let’s see how reverse

debugging can help us

QR code to UDB
trial

https://undo.io/udb-free-trial/

Reverse debugging (UDB) (1/3)

38

● The UDB Suite of tools is quite powerful -- so I will show a sample
of ‘recording’ and then traversing that recording

● First- capture the recording
○ ~/Downloads/Undo-Suite-x86-8.3.0/live-record --record-on

symbol:_Z12PostMainLoopv ./build/openttd
○ A few neat things

■ You can trigger the recording to start on a particular symbol
■ Tools like ‘nm’ can be helpful here to find such symbols

● nm build/openttd | grep MainLoop

● Then- replay the recording
○ ~/Downloads/Undo-Suite-x86-8.3.0/udb

openttd-466718-2025-06-10T19-18-20.511.undo

Reverse debugging (UDB) (2/3)

39

● Here’s an example of loading up
a recording and stepping
forward and backward

● Pretty neat!

https://docs.google.com/file/d/1VnhYi8Qn7S0J2br_0cEYo0MKm09fa3KR/preview

Reverse debugging (UDB) (3/3)

40

● One more demo worth showing
-- this one uses watchpoints

● So instead of hopping around
with ‘next’ -- we can pause on
data that changes

● You can find interesting data
(e.g. a ‘train data structure that
might get modified’) as shown
in this example

○ *hint* ‘ptype’ can help here in GDB
once you find an object and want to
look at the struct.

Time Travel Debugging - Greg Law - Meeting C++ 2023
https://www.youtube.com/watch?v=qyGdk6QMpMY

http://www.youtube.com/watch?v=-CPoea_n7es
https://www.youtube.com/watch?v=qyGdk6QMpMY

Pro Tip: Keep a Journal

41

● Now that you have done a few
investigations -- take some notes!

○ Making lists about what you learned or need
to revisit will be useful!

● I recommend using whatever
journaling tool is the lowest friction
thing for you

○ e.g. physical notebook perhaps, but a
‘Google Doc’ or text file that is ‘greppable’
may be best

○ More on note taking systems (e.g. .plan files):
■ https://www.youtube.com/watch?v=S

W1fzrB-UEg

https://garbagecollected.org/2017/10/24/the-carmack-plan/

https://www.youtube.com/watch?v=SW1fzrB-UEg
https://www.youtube.com/watch?v=SW1fzrB-UEg
https://garbagecollected.org/2017/10/24/the-carmack-plan/

How else can we find what’s important?

42

● Sampling profilers can be
another good tool to see ‘what
is going on’

● A profiler like perf will show
you what may be interesting.

○ i.e. the ‘hot paths’ in a codebase

sudo perf record ./openttd
sudo perf report

https://man7.org/linux/man-pages/man1/perf.1.html

Attaching to a Running Process

43

● Note: With most of the tools
I’m showing you today (GDB,
UDB, etc.) it’s possible to
‘attach to a running process’

○ This allows us to collect
information from a specific point
and time.

sudo perf record -p <pid> -g
sudo perf report

https://docs.google.com/file/d/1kQl0kMD8DJNlzKJ4-JJCw8kkncFaT6-d/preview

Visualization: callgrind and kcachegrind (1/2)

44

● There’s a good number of tools
as well that can help you
visualize the profile -

● The ‘Valgrind’ toolsuite
(pronounced: val-grinn) is
another dynamic analysis tool

Visualization: callgrind and kcachegrind (2/2)

45

● The goal here is to again ‘sample’ where we execute code
○ (The call graphs will look pretty in your journal too)

● Run:
○ valgrind --tool=callgrind -v --dump-every-bb=10000000 ./openttd

■ This grabs a sample every 10000000 basic blocks executed
■ Note again: There are some mechanisms to turn on/off sampling if things are

too slow
● e.g. callgrind_control --instr=on

○ Documentation for usage:
■ https://kcachegrind.sourceforge.net/html/Usage.html

https://kcachegrind.sourceforge.net/html/Usage.html

Visualization: callgrind and kcachegrind (1/3)

46

● Here’s an example of the output
from ‘callgrind’ visualized in
‘kcachgrind’

● Simply run:
○ kcachegrind
○ (from the directory where the output

of callgrind is dumped)

Visualization: callgrind and kcachegrind (2/3)

47

● Again, as you find things interesting, you can
explore the call graph

● kcachegrind has a way to ‘search’ for
functions

○ Using the ‘called’ column, you can find what may be
important

Visualization: callgrind and kcachegrind (3/3)

48

● Note: You can directly view the source from this tool as well
● However -- I’d recommend doing a debug session with udb or gdb

and setting a breakpoint at these points of interest

49

1. Understanding the control flow
2. The pure scale of software and its relation to complexity
3. Human factors can additionally contribute to making your life harder

Note: By pure scale that is an expression to mean: “The vast size” of the number of files and lines of code in a project.

Dealing with Pure Scale of Software

50

● Once you have some idea of the
project flow, it may be time to
‘dive into’ the project into more
specifics

● But since we cannot again look at
all of the source, we’ll focus on
reducing scale to the things you
care about

○ i.e. You don’t necessarily have to
understand about all of the codebase at
once -- often just smaller subsystems

Remember, 300,000+ lines of code -- wow

Source code uses ‘text’ as a visualization

51

● The pure scale (i.e. the size) of
codebases is a challenge, and
since we’ll be looking at a lot of
text...

○ If at all possible beg / borrow / steal a
large 4K+ screen, or two screens...

○ This is one of the few real hardware
advantages these days for developers

○ Given build / test is often remote, a
good screen or screens can be hugely
helpful too (although this has a cost,
so I understand if you'd prefer not to
recommend it to everyone)

https://i.pcmag.com/imagery/roundups/01Y9bqNdRmGOzHcetHQG2FW-36.fit_lim.size_1050x.webp

https://i.pcmag.com/imagery/roundups/01Y9bqNdRmGOzHcetHQG2FW-36.fit_lim.size_1050x.webp

Windows/Screen Management

52

● Another less technical
(but important)
suggestion

● Find a good window
manager

○ Either for your operating
system, or a multiplexer
(e.g. tmux) if you’re
working in terminal.

● The number of times
I’ve needed to compare
code side-by-side can
be very helpful to see
‘what have I missed’ I primarily use tmux and VIM to split my windows. Find some

tools you are otherwise comfortable with

https://github.com/tmux/tmux/wiki

Generate your Documentation (1/3)

53

● By now hopefully you’ve found a
few useful functions

○ Perhaps using udb, kcachegrind, etc.
● But how to keep notes of what

was important?
● No docs in your project?
● No problem -- generate them

yourself
○ Doxygen, Doxypress, or other

documentation generates can be
helpful here

https://www.doxygen.nl/

https://www.doxygen.nl/

Generate your Documentation (2/3)

54

● *Example Video* in 1-minute
● For more configuration options

check:
○ https://www.youtube.com/watch?v=t

LPHQMosF9M

doxygen -g
doxygen Doxyfile

https://www.youtube.com/watch?v=tLPHQMosF9M
https://www.youtube.com/watch?v=tLPHQMosF9M
https://docs.google.com/file/d/1nWQf8uGAoT2YiIf1EUvBi-Yi977TpOAY/preview

Generate your Documentation (3/3)

55

● Some more examples of what is generated
○ left: documentation extracted from functions and members of types
○ right: inheritance diagrams

Recap and Some Observations

56

● No documentation -- no problem
○ Generate your own using Doxygen,

Doxypress, or other tools to extract
information out.

○ Can often use your compiler to see the
dependencies at the least

● Viewing the ‘doxygen’ files (or any
documentation) gives you hints as
a developer to a few things

○ How are things named?
■ i.e. the naming convention

○ How are ‘errors’ propagated (return
codes or exceptions?)

● Take a few notes of this -- it will
help you when it does become
time to submit for code review!

Local file from Doxygen generated documentation:
file:///home/mike/Downloads/openttd/openttd-14.1-source/openttd-14.1/html/structCompanyPr
operties.html

Code you do not own

57

● In any big project, there will also be code that you do not own
● For example, shared libraries
● Finding shared libraries is easy

○ Just run a tool like ldd (Dependency Walker on Windows is also quite nice)
● You’ll often get some hints of what ‘graphics libraries’ to otherwise

pay attention to.

https://www.dependencywalker.com/

Zeal Docs (or Dash)

58

● For these function calls, I
recommend finding fast offline
documentation

○ no latency, and usually easier to
organize and keep tabs

○ Sometimes more powerful search
options as well

■ e.g. fuzzy search
● Note:

○ These tools in combination with
code you own can also be useful

Still too much? Try Running Examples/tests

59

● Try to reducing the scale of the
project further

● If you’re working in a
framework, then running some
of the smaller samples

○ e.g. a graphics library likely has
tutorials out there

● If you’re lucky, there may also
be some ‘tests’ that mock or
showcase behavior.

Some Other Tips (1/3)

60

● Some of you have the fortune of
working on nicely formatted
codebases

○ If your codebase is ‘ugly’ -- consider
running clang-tidy, indent, or similar
formatting tools to reformat and unify
the code.

● There’s a world coming soon
where we’ll need different
abstractions to visualize our code
-- perhaps you’ll come up with
other neat abstractions (e.g.
“software cities”)

○ https://ieeexplore.ieee.org/document
/4290706

○ https://www.cs.nmt.edu/~jeffery/city
-surv.pdf

A ‘software city’ is a metaphor for the source code. Blocks
may represent ‘namespaces’ or ‘directories’ and buildings
‘files’ for instance.

https://clang.llvm.org/extra/clang-tidy/
https://en.wikipedia.org/wiki/Indent_(Unix)
https://ieeexplore.ieee.org/document/4290706
https://ieeexplore.ieee.org/document/4290706
https://www.cs.nmt.edu/~jeffery/city-surv.pdf
https://www.cs.nmt.edu/~jeffery/city-surv.pdf

Some Other Tips (2/3)

61

● Study Design Patterns
○ Yes, they’re not perfect, but traditional patterns like ‘observer’, ‘visitor’, etc. tend

to show up.
■ These are found in the ‘Design Patterns’ or ‘Gang of Four’ book

○ Other sorts of software design things (e.g. ‘event-loop’, ‘component-pattern’,
‘plugin-system’) are also good to search for examples.

○ Often times writing a toy version of these patterns can help you understand the
context in a larger system.

● In some cases, you can try to find an application that may be similar
to what you’re developing, and learn about how that system is
documented.

○ There may be some hints within software case studies otherwise if your software
has absolutely no documentation on its architecture by looking at related
software.

○ See: https://aosabook.org/en/

https://en.wikipedia.org/wiki/Design_Patterns
https://aosabook.org/en/

Some Other Tips (3/3)

62

● Text editor and IDE Support continues to improve.
○ i.e. inference of types and other information often available as needed.

63

1. Understanding the control flow
2. The pure scale of software and its relation to complexity
3. Human factors can additionally contribute to making your life harder

Human Factors

64

● We have some tools now to help us
understand the control flow and working at
scale.

● But sometimes the hardest problems in
software are sometimes -- i.e. human factors

● What I mean by this is -- how do I get
motivated or focused to actually learn a
codebase?

○ My best answer is to put a real problem in front of
you that you will learn from! https://miro.medium.com/v2/resize:fit:1400/1*nOZxRBAQwq8FZ-IlNA630w@2x.jpeg

https://miro.medium.com/v2/resize:fit:1400/1*nOZxRBAQwq8FZ-IlNA630w@2x.jpeg

Find a first good task (1/3)

65

● With a large codebase, we might
get some direction by literally just
solving a problem.

○ If you’re lucky, your code base will be
labeled with ‘good first tasks’

○ Good first tasks are ‘byte sized’ -- i.e.
small, and picked out by engineers on
your team

● For our project today -- observe
there is a Development tab on the
website.

○ https://www.openttd.org/development

https://www.openttd.org/development

Find a first good task (2/3)

66

● Searching for ‘bugs’ or ‘issues’ are a great place to start
● Often time these issues will be labeled

https://github.com/OpenTTD/OpenTTD/issues

https://github.com/OpenTTD/OpenTTD/issues

Find a first good task (3/3)

67

● Of the labels for this particular project, I found
two that are probably good ‘starting places’

○ i.e. they imply a small amount of work

https://github.com/OpenTTD/OpenTTD/issues

https://github.com/OpenTTD/OpenTTD/issues

If you are not assigned a good ‘first task’:

68

● Don’t forget about our tool ‘grep’
○ Try searching for ‘TODO’, ‘FIXME’ or

‘Later’ as ‘keywords’
○ If you’re lucky, you may find notes

something like:
■ “This is 'hard-coded' and should be

fixed later”
■ “FIXME, this is a ‘magic constant’

that should be loaded from a
config file...”

■ etc.
● grep -irn -I --include=*.cpp

"TODO" ./src/
○ TODO Show an example of how to query

for small ‘git diff’ messages in the git log.
○ Ideally can do this in a ‘subsystem’

you’re working in or interested in.
○ Thegithub messages should give some

hints about what is going on, or at the
least the code change.

More ideas for ‘first’ tasks

69

● Another idea is to try fixing some 'warnings' in the code.
○ Not glorious, but at the least can give you some practice.

● Probably more exciting is to try to ‘add’ something
○ This might be adding another item to a ‘listbox’ user interface widget

■ That will teach you if this data is hard-coded, comes from a configuration
file, is downloaded, etc.

■ Again, it will probably give you an idea of how some system works.
● Exercise: Try using udb or gdb to ‘track’ what function is called

when you click on something.
○ udb has live recorder for tracking changes, and otherwise we can use our grep

skills to search the codebase

https://undo.io/products/udb/
https://www.sourceware.org/gdb/

Human Factors: Asking for Help (on a team)

70

● Don't be arrogant, and be always be nice to your teammates.
○ Empathy matters a lot when working on teams, and it helps when you want to ask

each other questions!
● "If you don't know, just ask"

○ If you’re a junior engineer, then bring what you have tried/learned for the
problem you have solved

○ If you’re a senior engineer, make a note of where reoccurring questions may be
coming from in the project.

■ Generally, don’t put juniors in uncomfortable positions either -- sit down
with them when they first join your team to help them get acquainted!

■ Screen record your session if appropriate, or let junior engineers take a
picture of the whiteboard

71

1. Understanding the control flow
2. The pure scale of software is often one factor.
3. Human factors can additionally contribute to making your life harder

Bonus Round: AI

Does AI Solve this problem?

72

● I’m not sure -- yet (sorry!)
○ But if you have access to enterprise AI tools (i.e. where it’s safe to paste some code

in if you’re working at a company) -- they may help summarize what code is doing.
● Some spaces to watch out for

○ Code/context summarizers (e.g. https://sourcegraph.com/)
○ Debugging assistants chatDBG
○ All of these tools will likely continue to improve, so keep an eye on this space!

https://sourcegraph.com/
https://github.com/plasma-umass/ChatDBG

Does AI Solve this problem?

73

● It's getting there, but there's a way to go
○ But if you have access to enterprise AI tools (i.e. where it’s safe to paste some code

in if you’re working at a company) -- they can help summarize what code is doing,
answer your questions about the codebase, help with basic tasks.

● Some spaces to watch out for
○ Code/context summarizers (e.g. https://sourcegraph.com/)
○ Debugging assistants chatDBG
○ Claude Code terminal based collaborative coder
○ Undo's AI integration coming soon (see the lightning talk by Rashmi time TBC)

● Things to watch out for
○ AIs get distracted if something looks like something they have seen before
○ They can be very convincing, especially when you don't know the codebase either
○ They rarely challenge you or defend their positions with evidence
○ "Trust but verify" is the safest approach today

https://sourcegraph.com/
https://github.com/plasma-umass/ChatDBG
https://www.anthropic.com/claude-code

More Resources

74

Talks on Tools / Debuggers (Linux Focus)

75

● Debugging and Tools
○ Time Travel Debugging - Greg Law - Meeting C++ 2023

■ https://www.youtube.com/watch?v=qyGdk6QMpMY
● Note: Example of following ‘data’

○ Back to Basics: Debugging in Cpp - Greg Law - CppCon 2023
■ https://www.youtube.com/watch?v=qgszy9GquRs

○ Back to Basics: Debugging in C++ - Mike Shah - CppCon 2022
■ https://www.youtube.com/watch?v=YzIBwqWC6EM

○ Cool New Stuff in Gdb 9 and Gdb 10 - Greg Law - CppCon 2021
■ https://www.youtube.com/watch?v=xSnetY3eoIk

○ CppCon 2018: Greg Law “Debugging Linux C++”
■ https://www.youtube.com/watch?v=V1t6faOKjuQ

○ CppCon 2016: Greg Law “GDB - A Lot More Than You Knew"
■ https://www.youtube.com/watch?v=-n9Fkq1e6sg

● Time Travel Case Studies
○ Quake 2 https://www.jwhitham.org/2015/05/review-undodb-reversible-debugger.html
○ Doom - Reviving a zombie: https://www.youtube.com/watch?v=tjJLZ1da6xs

https://www.youtube.com/watch?v=qyGdk6QMpMY
https://www.youtube.com/watch?v=qgszy9GquRs
https://www.youtube.com/watch?v=YzIBwqWC6EM
https://www.youtube.com/watch?v=xSnetY3eoIk
https://www.youtube.com/watch?v=V1t6faOKjuQ
https://www.youtube.com/watch?v=-n9Fkq1e6sg
https://www.jwhitham.org/2015/05/review-undodb-reversible-debugger.html
https://www.youtube.com/watch?v=tjJLZ1da6xs

Summary

76

We have many tools to help us!

● For Understanding the control flow
○ Use debuggers and profilers to find what is important and ‘slow down’

■ ‘attaching’ to live running processes is incredibly helpful
● The pure scale of software is often one factor.

○ Try to reduce the scale
■ Use documentation tools and visualizations

● docs are also easy to ‘bookmark’ and recall over time as you understand
software

■ Take your own notes as you learn!
● Human factors can additionally contribute to making your life

harder
○ Find ‘small’ problems to understand first
○ Don’t be afraid to ask for help

Thank you!
Understanding Large and Unfamiliar

Codebases

77

Web: mshah.io 60 minutes | Intermediate Audience
 www.youtube.com/c/MikeShah 19:00 - 20:00 Thur, June 19, 2025

Social: mikeshah.bsky.social
Courses: courses.mshah.io
Talks: http://tinyurl.com/mike-talks

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Thank you!

78

